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Abstract

This study presents direct numerical simulations of natural con-
vection for air (Pr = 0.709) in a vertical channel driven by
differentially heated walls at Rayleigh numbers (Ra) up to
2.0× 107. The present data is validated with that from Ver-
steegh and Nieuwstadt [9] for Ra = 5.0× 106. Using the
present data for higherRa, we appraise and compare the var-
ious proposed scaling laws for the mean temperature defect,
Th−T , and the streamwise velocity,u, by Versteegh and Nieuw-
stadt [9], Hölling and Herwig [2] and Shiri and George [6]
(cf. George and Capp [1]). For the mean temperature pro-
file, the present data supports the inner temperature scaling,
Ti = [| fw|

3/(gβα)]1/4, proposed by all the three studies, where
fw is the heat flux at the wall,g is the gravitational accelera-
tion, β is the thermal expansion coefficient andα is the heat dif-
fusion coefficient. Using compensated temperature gradients,
constants are found for the wall function for mean temperature,
which takes the form of a power-law:

Th −T
Ti

=−3.6

(

z
li

)−1/3

+4.5,

where z is the distance in the wall-normal direction andli is
the inner length scale, defined by[α3/(gβ| fw|)]

1/4. For the
mean velocity profile, we found that the inner velocity scale
ui = (gβ| fw|h)1/3, proposed by Shiri and George [6], collapses
the velocity profiles in the near-wall region. Here, we defineh
as the channel half-width.

Introduction

Statistics describing turbulent natural convection in a vertical
channel have, in the past, been approached through various
forms of scaling analysis (e.g. George and Capp [1], Shiri and
George [6], Hölling and Herwig [2], Yuan et al. [10]), and is
typically followed by validation with experimental and DNS
data (e.g. Versteegh and Nieuwstadt [9]). Hereafter, with the
exception of Yuanet al., we refer to the authors as GC, SG, HH
and VN respectively.

To date, the DNS data by VN forRa up to 5.0×106 and the ex-
perimental data by Tsuji and Nagano [8] for Ra up to 2.5×1011

are the known highest-Ra data available for comparison. How-
ever, as DNS enables a more straightforward collation of data
for higher-order statistics, this paper focuses on providing DNS
data forRa > 5.0×106 to validate proposed scaling laws and
asymptotic theories. Furthermore, SG argues that, in orderfor
deductions of asymptotic wall functions to be critically evalu-
ated, channel flow should ideally have a ratio of outer to inner
length scales,h/li, greater than 10. We use this ratio as a start-
ing point for comparison. For the present data,h/li is in the
range of 19–62.

Background

Governing Equations

For the present study, we adopt the Boussinesq approximation
(constant fluid properties except buoyancy, which is a function
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Figure 1: Diagram of natural convection in a vertical channel.

of temperature) for fully developed turbulent natural convec-
tion flow driven by the temperature difference between the two
walls, ∆T . Here,∆T = Th −Tc, whereTh andTc are defined as
the temperatures of the ‘hot’ and ‘cold’ walls respectively. For
all simulations in this study, the ‘hot’ wall is defined as theleft
channel wall (figure1). T0 is defined as the average temperature
across the channel. The relevant measure of the flow, analogous
to the Reynolds number, is the Rayleigh numberRa, defined as
Ra = gβ∆T h′3/(να), whereg is the acceleration of gravity,ν
is the viscosity,α is the thermal diffusivity andβ is the thermal
expansion coefficient.ν, α andβ are properties of the fluid in
the channel. The streamwise, spanwise and wall-normal direc-
tions arex, y andz respectively, and the channel full width ish′

(= 2h). The mean equations of motion can be written as:

0 =
d
dz

(

ν
du
dz

−u′w′

)

+gβ(T −T0), (1)

0 =
d
dz

(

α
dT
dz

−w′T ′

)

, (2)

(cf. GC) where the mean flow is averaged over time as well as
the streamwise and spanwise direction. The overbar denotesthe
ensemble average of the quantities while the fluctuating quanti-
ties are denoted by a prime. The Reynolds stress is−u′w′ and
the turbulent heat flux is−w′T ′.

Simulation Details

The governing equations are solved numerically over a compu-
tational domain size defined byLx ×Ly × Lz, with resolutions
nx ×ny ×nz = 432×216×96 for Ra up to 5.0×106 (cf. VN)
and nx × ny × nz = 768× 384× 192 for Ra = 2.0× 107. We
have determined that grid spacings,∆x/li of O(1) are sufficient
to resolve the small scales. The simulation time is defined as
tsim/teddy= ((gβ fwh)1/3 · tsim)/h, (see table2:SG), wheretsim
is the length of time used to record statistics. Table1 lists the
simulation parameters in this study.

The governing equations are spatially discretised using the fully



Ra Lx/h Ly/h ∆x× ∆y× ∆z×c tsim/teddy

5.4×105 24 12 1.1 1.1 0.6 120.0
2.0×106 24 12 1.6 1.6 1.0 147.1
5.0×106 24 12 2.2 2.2 1.3 117.3

†2.0×107 24 12 1.9 1.9 1.0 12.8

Table 1: Simulation parameters for this study. The cell grid-
sizes,∆x×, ∆y× and∆z×c are scaled by the inner length scale,
li = [α3/(gβ| fw|)]

1/4. The wall normal gridsize∆z×c is mea-
sured at the channel half-width.(†At the time of writing, the high-
estRa appears not to have fully converged (tsim/teddy< 100.0), but the
results are included nonetheless.)

conservative fourth-order staggered scheme of Morinishiet
al. [4] and marched in time using the low-storage third-order
Runge–Kutta scheme of Spalartet al. [7]. The velocity field is
projected onto a divergence-free field after each Runge–Kutta
stage via the fractional-step method (e.g. Kim and Moin [3]).
Grid spacings in the streamwise and spanwise directions are
uniform, and the wall-normal spacings utilise a cosine stretch-
ing grid.

Comparison with Published DNS Data

The results of the present DNS are validated against the dataof
VN. Flow statistics forRa = 5.0×106 are shown in figures2
and3.
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Figure 2: DNS temperature and velocity data forRa= 5.0×106

by VN [9] (◦) compared with the present data (—).
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Figure 3: DNS turbulent velocity data forRa = 5.0× 106 by
VN [9] (◦) compared with the present data (—).

In the mean temperature plot (figure2b), the present data
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Figure 4: DNS cross–correlated turbulent velocity data forRa=
5.0× 106 by VN [9] (◦) compared with the present data (—).
The inset figure shows DNS data forz/h up to 0.03.

matches well with the data from VN. However, for the mean
velocity (figure 2a), the streamwise velocity data from the
present simulation exhibits a higher peak velocity, at (z/h ≈
0.1, u/(α/h) ≈ 930) compared to data by VN at (≈ 0.1, ≈
900). Similarly for the turbulent streamwise velocity (figure
3, top curve), the present simulation data peak at the centre
of the channel at (z/h ≈ 1.0, u′u′/(α/h)2 ≈ 4.2× 105) com-
pared to data by VN at (≈ 1.0, ≈ 3.7× 105). The spanwise,
wall-normal and cross–correlated turbulent velocity fluctuations
(u′w′/(α/h)2) matches to that of VN (the latter shown in figure
4). At the time of writing, the cause of the difference for the
streamwise velocity data is still unknown but, in general, the
present simulations agree qualitatively with the DNS data of
VN.

Analysis of High Rayleigh Number Results

Temperature Profile

We begin by describing the inner–outer scaling approach
adopted by the various authors named above, which defines an
inner layer of the flow close to the wall and an outer layer at the
core of the channel. Equation (2) can be integrated, giving

α
dT
dz

−w′T ′ =−
qw

ρCp
≡− fw, (3)

which describes a characteristic heat flux constantfw equivalent
to the wall heat fluxqw flowing from left to right divided by
densityρ and specific heatCp. The same constant heat flux is
felt by both inner and outer regions of the flow. This implies that
the characteristic constantfw is independent of location and can
be deduced as a characteristic parameter for describing theflow
in the channel. From equations (1) and (2), the parametersα,
ν, gβ andh, are used to form the necessary scales (cf. GC). The
inner scaling for temperature and length proposed by VN, HH
and SG (cf. GC) are summarised in table2.

All three studies propose similar inner and outer length scales,
as well as the inner temperature scale. However, there are dif-
ferences in the choice of the velocity scales and the outer tem-
perature scales. These differences potentially arose fromthe
limited availability of highRa data to date.

Interestingly, but not surprisingly, the wall functions proposed
are different: VN and SG (cf. GC) propose a power-law func-
tion based on dimensional arguments positing the existenceof
a buoyant sublayer while HH proposes a logarithmic law us-
ing the gradient-matching approach. Of the three, SG did not
determine a constant for their wall function.



VN [9] HH [2] SG [6]

Inner scaling

ui (gβ| fw|α)1/4 (gβ| fw|α)1/4Pr−1 (gβ| fw|h)1/3

Ti

(

| fw|
3

gβα

)1/4 (

| fw|
3

gβα

)1/4 (

| fw|
3

gβα

)1/4

li
(

α3

gβ| fw|

)1/4 (

α3

gβ| fw|

)1/4 (

α3

gβ| fw|

)1/4

Outer scaling

uo (gβ| fw|h)1/3 (gβ| fw|α)1/4Pr−1 (gβ| fw|h)1/3

To

(

| fw|
2

gβh

)1/3 (

| fw|
3

gβα

)1/4 (

| fw|
2

gβh

)1/3

lo h h h

Table 2: Comparison of inner and outer layer scales.

Using the present data, we now determine the constants for
the temperature wall function proposed by SG, which takes the
power-law form:

Th −T
Ti

=−c1

(

z
li

)−1/3

−c2(Pr), (4)

wherec1 is a constant yet to be determined andc2(Pr) is a
Prandtl number dependent constant. Presently,c2(Pr) is con-
stant forPr = 0.709. By differentiating equation (4), we obtain

dT×

dz×
=

( c1

3

)

(z×)−4/3, (5)

where T× = (Th − T )/Ti = (Th − T )/[| fw|
3/(gβα)]1/4 and

z× = z/li = z / [α3/(gβ| fw|)]
1/4. To estimate the constantsc1

andc2, we rewrite equations (4) and (5) into diagnostic quanti-
ties,c1 = 3z×(4/3)dT×/dz× and c2 = −3z×dT×/dz× −T×,
similar to the approach by Moseret al.[5]. Assuming that the
power law is valid,c1 andc2 should exhibit linearity in a region
of z×, which we estimated in figure5 for 1. z× . 3.
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Figure 5: A plot of compensated temperature gradient to deter-
mine the universal constantsc1 andc2.

Hence, we determine the constants to be:c1 = 3.6 andc2 =
−4.5, giving the temperature wall function with newly fitted
constants:

Th −T
Ti

=−3.6

(

z
li

)−1/3

+4.5. (6)

In summary, the wall functions are listed in table3.

VN [9] (cf. GC [1]) −4.2(z×)−1/3+5.0

HH [2] 0.4log(z×)+1.9

SG [6] −3.6(z×)−1/3+4.5 ∗

Table 3: Temperature wall functions,T×(z×). For (∗), con-
stants are determined from present data.

Figure6 compares the fit of the respective wall functions to the
present DNS data. As expected, the linear region near the wall,
T× = z× fits the profiles exactly, up toz× ≈ 1. However, we
found that each outer wall functions fit different ranges of the
temperature profile. The logarithmic equation of HH appearsto
fit the outer region 7. z× . 30 while the power-law equation
of VN fits the lowestRa data very well. In contrast, the power-
law function with new constants (a variation from VN and GC)
shows a good fit to the DNS data fromz× ≈ 1 to z× ≈ 30 with
a slight deviation between 2.5. z× . 10 and it appears that the
trend will continue asymptotically.

 

 

z / [α3/(gβ| fw|)]
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Figure 6: DNS temperature data scaled with inner temperature
scale,Ti, and inner length scale,li, showing general agreement
with new temperature wall function for 1. z× . 30, with slight
deviation between 2.5. z× . 10.

Velocity Profile

Here, we shall perform a straightforward comparison and ap-
praisal of inner velocity scales using the present data. In addi-
tion, and of particular interest, is the asymptotic velocity pro-
file theory proposed by SG which we also used to analyse the
present data. For reference, the velocity scales are summarised
in table2.

VN and HH approached the problem of inner velocity scaling
on the assumption that local effects drive the flow close to the
wall, so on dimensional grounds,uiT = (gβ| fw|α)1/4. Here, the
subscriptT identifies a velocity scale based on thermal diffusiv-
ity, α. Plotting the data from this study withuiT gives figure7.
In the region close to the wall (z× < 1) where the velocity pro-
files are expected to collapse, we observe a systematic departure
with increasingRa.

SG, however, argues that asymptotically, the buoyancy-induced
flow away from the wall drives the velocity in the vicinity of
the wall. In other words, the outer velocity scalinguoh =

(gβ| fw|h)1/3 matches the inner velocity scalinguih for suffi-
ciently high Ra values. The subscripth denotes dependency
on the outer flow region. This is apparent in figure8, where a
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Figure 7: DNS velocity data scaled with inner velocity scale,
uiT , and inner length scale,li, showing systematic increase with
higherRa.
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Figure 8: DNS velocity data scaled with inner velocity scale, uih
and inner length scale,li, showing collapse of velocity profiles
for z× up to 0.3.

collapse of the velocity profiles is apparent forz× < 0.3.

In the asymptotic analysis of the inner velocity scale, SG and
GC theorised a proportional relationship between the velocity
scale,uoh, and the wall shear velocity,uτ, asRa → ∞, that is,
the ratiouτ/uoh approaches a constant for sufficiently highRa.
With the present data, we calculateuτ/uoh and a plot against
log(Ra) is shown in figure9. From the figure, we observe a
decreasing trend that appears to approach a constant. This sug-
gests that perhaps, the presentRa is not sufficiently high to test
the theory proposed by SG and GC. This is subject to ongoing
investigation.

Conclusions

DNS for turbulent natural convection in a vertical channel for
Ra up to 2.0× 107 was conducted, and data forRa = 5.0×
106 was validated with published results from Versteegh and
Nieuwstadt [9]. Using the present data, new constants for the
asymptotic temperature wall function have been determinedand
appears to support a power law. For the mean velocity profile,
the data for highRa collapses with the velocity scale proposed
by Shiri and George [6], which supports the theory that the near
wall flow regime is dependent on buoyant effects away from
the wall. From this finding, Shiri and George [6]’s proposed
relationship between the wall shear velocity,uτ, and the veloc-
ity scale,uoh at higherRa has interesting implications: a log-
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Figure 9: A plot ofuτ/uoh versus logRa showing potential con-
vergence with increasingRa.

arithmic relationship for the mean velocity profile. This isthe
subject of our ongoing study.
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